Autler-Townes spectroscopy in a Mn-doped InAs/GaAs quantum dot

Jovana Filipovic, Aristide Lemaître, Olivier Krebs

Centre for Nanosciences and Nanotechnology, CNRS, University Paris-Saclay, France

Centre DE Nanosciences & DE Nanotechnologies

Mn-doped InAs/GaAs quantum dot

- Self-assembled InAs/GaAs quantum dot (QD)
- Applications
 - Single photon sources
 - Quantum memories

Mn-doped InAs/GaAs quantum dot

- Self-assembled InAs/GaAs quantum dot (QD)
- Applications
 - Single photon sources
 - Quantum memories
- o QD with a single Mn dopant
- \odot Single Mn dopant (A^0) provides a $|{\pm}1\rangle$ spin state
- Exchange interaction with a confined hole:
 - ferromagnetic $|\pm 1, \pm \frac{3}{2}\rangle$, antiferromagnetic configuration $|\pm 1, \pm \frac{3}{2}\rangle$

A. Kudelski, et al., Phys. Rev. Lett. 99, 247209 (2007)O. Krebs, et al., Phys. Rev. B 80, 165315 (2009)E. Baudin, et al., Phys. Rev. Lett. 107, 197402 (2011)

Mn-doped InAs/GaAs quantum dot

- Self-assembled InAs/GaAs quantum dot (QD)
- Applications
 - Single photon sources
 - Quantum memories
- o QD with a single Mn dopant
- \odot Single Mn dopant (A^0) provides a $|{\pm 1}\rangle$ spin state
- Exchange interaction with a confined hole:
 - ferromagnetic $|\pm 1, \pm \frac{3}{2}\rangle$, antiferromagnetic configuration $|\pm 1, \pm \frac{3}{2}\rangle$
- $_{\odot}$ Optical transitions: Double Λ system

A. Kudelski, et al., Phys. Rev. Lett. 99, 247209 (2007)
O. Krebs, et al., Phys. Rev. B 80, 165315 (2009)
E. Baudin, et al., Phys. Rev. Lett. 107, 197402 (2011)

Motivation/Experimental setup

- Coherent probing of these transitions by resonant spectroscopy
- Dark field confocal microscope
- H/V cross-polarized configuration
- Typical laser extinction 10⁶-10⁷

Optically driven QD near resonance

Strong field light-matter interaction

Autler-Townes splitting

 Sufficiently strong resonant driving field -> dressed states

o generalised Rabi frequency $\Omega_R = \sqrt{\Omega_0^2 + \delta_l^2}$

• Scales as $\Omega_R \sim \sqrt{P}$

 \circ Autler-Townes effect observed in Λ system

Single-laser probing

- Natural QD linewidth (~1.5 μeV)
- → Spectral diffusion

Single-laser probing

• What if we increase the power of resonant laser?

o Raman line

 $_{\odot}$ Autler-Townes splitting Ω_{R} resolved

Single-laser probing

 $_{\rm O}$ Autler-Townes splitting Ω_{R} resolved

Ω_R shows square root power dependence

$$\circ \Omega_R = k\sqrt{P}$$

 \circ Saturation power $P \sim 1 \ \mu W$

• AT splitting probed by second laser

- Fixed strong laser pump
- Scanning laser of lower power probe

o Model that describes this system?

Model

• Rabi frequencies ($\Omega = k\sqrt{P}, \ \Omega' = k'\sqrt{P'}$) • laser detunings δ, δ' • population decay rate γ_i • pure dephasing rate Γ_{ij}

- Density matrix equations
- Rotating wave approximation
- Steady-state regime

 \odot Inhomogeneous broadening (assuming Gaussian distribution of (FWHM ~16 $\mu eV))$

Numerical solution

Dependence on pump power and pump detuning

• No significant pure dephasing $(\Gamma_{21} = \Gamma_{23} = \Gamma_{13} = 0 \ \mu eV)$

 $\circ \gamma_4$ is small ($\gamma_1 = 1 \ \mu eV, \gamma_3 = 1.1 \ \mu eV, \gamma_4 = 0.07 \ \mu eV$)

 \circ Pump laser (11 μ W), probe laser (1.3 μ W)

 $_{\odot}$ Dip with typical 10 μeV linewidth

 The two-laser resonance reveals the spin coherence of X⁺-A⁰ states.

 $_{\odot}$ Pump laser (11 μW), probe laser (1.3 $\mu W)$

 $_{\odot}$ Dip with typical 10 μeV linewidth

 The two-laser resonance reveals the spin coherence of X⁺-A⁰ states.

Conclusion and perspectives

- QD in cavity
- \circ For X⁺ trion, Γ_{13} is small
- \odot Working with X^0 and $X^{\scriptscriptstyle -}$ trions
- Coherent population trapping

W. B. Gao, et al., Nature 491, 426–430 (2012)

www.c2n.universite-paris-saclay.fr

Optics of Semiconductor nanoStructures Group (GOSS)

jovana.filipovic@univeriste-paris-saclay.fr